

Current Sensor

Model Number:

HS2V 200 H00

HS2V 400 H00

HS2V 500 H00

HS2V 600 H00

HS2V 800 H00

HS2V 1000 H00

HS2V 1200 H00

HS2V 1500 H00

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuits.

Features

- Open loop sensor using the Hall Effect
- ♦ Galvanic separation between primary and secondary
- ♦ Insulating plastic case recognized according to UL94-V0
- ♦ No insertion loss
- ♦ Small size
 - Standards:
 - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed drives
- ♦ Uninterruptible Power Supplies (UPS)
- ♦ Static converters for DC motor drives
- ♦ Switch Mode Power Supplies (SMPS)
- ♦ Power supplies for welding applications
- ♦ Battery management
- Wind energy inverter

Safety

This sensor must be used according to IEC 61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Doc Ref.: 1800 000 01063 www.chipsensor.cn

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	V c	V	± 15.75
Primary conductor temperature	<i>T</i> _B	$^{\circ}$	105
ESD rating, Human Body Model (HBM)	V ESD	kV	4

^{*} Stresses above these ratings may cause permanent damage.

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T _A	$^{\circ}$	-40		105	
Ambient storge temperature	<i>T</i> s	$^{\circ}$	-40		105	
Mass	m	g		280		

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @ 50Hz,1min	$V_{ m d}$	kV	4.9	According to IEC 60664-1
Impulse withstand voltage 1.2/50µs	V _W	kV	9.9	According to IEC 60664-1
Clearance (pri sec.)	d cı	mm	11	
Creepage distance (pri sec.)	d Cp	mm	11	
Plastic case	ı	-	UL94-V0	
Comparative traking index	СТІ	PLC	3	
Application example	-	-	550V	Reinforced insulation,according to IEC 61800-5-1, IEC 62109-1CATIII, PD2
Application example	-	-	1100V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CATIII, PD2

^{*} Exposure to absolute maximum ratings for extended periods may degrade reliability.

Electrical data

 \aleph With T_A = 25 °C, V_C = ±15V, R_L = 10kΩ,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current		А	-200		200	HS2V 200 H00
			-400		400	HS2V 400 H00
			-500		500	HS2V 500 H00
	Æп		-600		600	HS2V 600 H00
			-800		800	HS2V 800 H00
			-1000		1000	HS2V 1000 H00
			-1200		1200	HS2V 1200 H00
			-1500		1500	HS2V 1500 H00
		А	-600		600	HS2V 200 H00
			-1200		1200	HS2V 400 H00
Primary current, measuring range	/ em		-1500		1500	HS2V 500 H00
Trimary current, moustaining range	7 РМ		-1800		1800	HS2V 600 H00
			-2400		2400	HS2V 800 H00
			-2500		2500	HS2V 10001500 H00
Supply voltage	Vc	V		±15		@ 5%
Current consumption	k	mA		20		
Load resistance	R_{L}	kΩ	10			
Output voltage(Analog)@I _{PN}	Г о∪т	V	± 3.980	± 4.000	± 4.020	
Electrical offset voltage	V₀E	mV	-20		20	
Temperature coefficient of V_{OE}	<i>TCV</i> _{0E}	mV/K	-1		1	@ -40℃~80℃
Tomporatare desimelent of V _{0E}			-1.5		1.5	@ 80℃~105℃
	$G_{ m th}$	mV/A		20.00		HS2V 200 H00
				10.00		HS2V 400 H00
				8.00		HS2V 500 H00
Theoretical sensitivity				6.67		HS2V 600 H00
Theoretical Sensitivity				5.00		HS2V 800 H00
				4.00		HS2V 1000 H00
				3.33		HS2V 1200 H00
				2.67		HS2V 1500 H00
Sensitivity error	$\mathcal{E}_{ extsf{G}}$	%	-0.5		0.5	Exclusive of V_{OE}
Temperature of G	TCG	%/K	-0.1		0.1	@ -40℃~105℃
Linearity error 0J _{PN}	\mathcal{E}_{L}	% of I _{PN}	-1		1	Exclusive of $V_{\rm OE}$
Hysteresis offset voltage@ /p=0 after 1 × /pN	V_{OM}	mV	-10		10	
Accuracy@ I _{PN}	Χ	% of ∱ _N	-1		1	Exclusive of $V_{\rm OE}$
Response time@ 90% of I _{PN}	<i>t</i> r	μs			5	
Frequency bandwidth(-3dB)	BW	kHz	25			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance

♦ Connection of secondary

♦ Primary hole

♦ Sensor

±0.5 mm

Molex 5045-04A

40.5mm×32.5mm

2pc Ф4.5 mm through-hole

2pc M4 Metal screws

Recommended fastening torque 2.1 N•m (±10%)

Remarks

- V_{OUT} and I_P are in the same direction, when I_P flows in the direction of arrow.
- ♦ Temperature of the primary conductor should not exceed 105℃.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.